Dieses Bild zeigt Frank Kern

Frank Kern

Herr apl. Prof. Dr. rer. nat.

Abteilungsleiter Hochleistungskeramiken
IFKB
Abteilung Hochleistungskeramiken

Kontakt

Allmandring 7b
70569 Stuttgart
Deutschland
Raum: 1.43

Fachgebiet

  • Abteilungsleiter Hochleistungskeramiken
  • Lehrbeauftragter
  • Oxidkeramiken für biomedizinische Anwendungen
  • Entwicklung von Nanocompositekeramiken und deren Fertigungsverfahren
  • Fertigungstechnologien für neue Werkstoffe aus sinterfähigem Kohlenstoff
  1. 2024

    1. F. Kern und B. Osswald, „Properties of a Pressureless Sintered 2Y-TZP Material Combining High Strength and Toughness“, Ceramics, Bd. 7, Nr. 3, Art. Nr. 3, 2024, doi: 10.3390/ceramics7030058.
    2. A. Kabir u. a., „Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr1–x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2−δ Ceramics“, ACS Applied Materials & Interfaces, Bd. 16, Nr. 10, Art. Nr. 10, März 2024, doi: 10.1021/acsami.3c17501.
    3. B. Osswald und F. Kern, „Ytterbia – praseodymia co-stabilized TZP with high toughness and transformation limited strength“, Open Ceramics, März 2024, doi: 10.1016/j.oceram.2023.100515.
    4. L. Dufner, L. Aresté-Saló, M. Graells, M. Pérez-Moya, F. Kern, und W. Rheinheimer, „Photocatalytic degradation of paracetamol on immobilized TiO2 in a low-tech reactor by solar light for water treatment“, Open Ceramics, Bd. 18, S. 100599, Juni 2024, doi: 10.1016/j.oceram.2024.100599.
  2. 2023

    1. L. Theis und F. Kern, „Pressureless sintering of yttria-gadolinia co-stabilized zirconia“, Journal of the European Ceramic Society, Bd. 43, Nr. 7, Art. Nr. 7, 2023.
    2. L. Dufner, F. Ott, N. Otto, T. Lembcke, und F. Kern, „Immobilization of TiO2 Photocatalysts for Water Treatment in Geopolymer Based Coatings“, Catalysts, Mai 2023, doi: 10.3390/catal13050898.
    3. A. Ziębowicz, B. Oßwald, F. Kern, und W. Schwan, „Effect of Simulated Mastication on Structural Stability of Prosthetic Zirconia Material after Thermocycling Aging“, Materials, Jan. 2023, doi: 10.3390/ma16031171.
    4. E. Walter, A. Gommeringer, und F. Kern, „Influence of alumina content to mechanical properties and electric discharge machinability of zirconia (1.5Y-1.5Nd-TZP)-tungsten carbide-alumina composites“, Journal of the European Ceramic Society, Juli 2023, doi: 10.1016/j.jeurceramsoc.2022.12.014.
    5. L. Donat, B. Osswald, und F. Kern, „1Yb-2Sm-TZP, a new co-stabilized zirconia material with high toughness and low temperature degradation resistance“, Journal of the European Ceramic Society, Bd. 43, Nr. 7, Art. Nr. 7, 2023.
    6. T. Heim und F. Kern, „Influence of the Feedstock Preparation on the Properties of Highly Filled Alumina Green-Body and Sintered Parts Produced by Fused Deposition of Ceramic“, Ceramics, Jan. 2023, doi: 10.3390/ceramics6010014.
    7. G. F. Vidor und F. Kern, „Microstructure, mechanical properties and aging resistance of 12Ce-TZP reinforced with alumina and in situ formed manganese cerium hexaaluminate precipitates“, Journal of the European Ceramic Society, Juli 2023, doi: 10.1016/j.jeurceramsoc.2022.11.067.
    8. L. Dufner u. a., „Adjustment of Micro- and Macroporosity of ß-TCP Scaffolds Using Solid-Stabilized Foams as Bone Replacement“, Bioengineering, Feb. 2023, doi: 10.3390/bioengineering10020256.
  3. 2022

    1. E. Walter, M. Rapp, und F. Kern, „Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites“, Journal of Manufacturing and Materials Processing, Feb. 2022, doi: 10.3390/jmmp6020028.
    2. D. S. Nakonieczny u. a., „PA-12-Zirconia-Alumina-Cenospheres 3D Printed Composites: Accelerated Ageing and Role of the Sterilisation Process for Physicochemical Properties“, Polymers, Aug. 2022, doi: 10.3390/polym14153152.
    3. J. K. Han u. a., „Enhanced electromechanical properties in low-temperature gadolinium-doped ceria composites with low-dimensional carbon allotropes“, Journal of Materials Chemistry A, 2022, doi: 10.1039/d1ta10854a.
    4. C. Muñoz-Ferreiro u. a., „Highly efficient electrical discharge machining of yttria-stabilized zirconia ceramics with graphene nanostructures as fillers“, Journal of the European Ceramic Society, Bd. 42, Nr. 13, Art. Nr. 13, 2022.
    5. F. Kern und R. Lawitzki, „Properties of alumina 10 vol% zirconia composites—The role of zirconia starting powders“, Journal of the European Ceramic Society, Bd. 42, Nr. 2, Art. Nr. 2, Feb. 2022, doi: 10.1016/j.jeurceramsoc.2021.10.036.
  4. 2021

    1. D. S. Nakonieczny, F. Kern, L. Dufner, A. Dubiel, M. Antonowicz, und K. Matus, „Effect of Calcination Temperature on the Phase Composition, Morphology, and Thermal Properties of ZrO2 and Al2O3 Modified with APTES (3-aminopropyltriethoxysilane)“, Materials, Bd. 14, Nr. 21, Art. Nr. 21, 2021, doi: 10.3390/ma14216651.
    2. D. S. Nakonieczny, F. Kern, L. Dufner, M. Antonowicz, und K. Matus, „Alumina and Zirconia-Reinforced Polyamide PA-12 Composites for Biomedical Additive Manufacturing“, Materials, Bd. 14, Nr. 20, Art. Nr. 20, 2021, doi: 10.3390/ma14206201.
    3. M. Rapp, A. Gommeringer, und F. Kern, „Electrical Discharge Machinable Ytterbia Samaria Co-Stabilized Zirconia Tungsten Carbide Composites“, Ceramics, Bd. 4, Nr. 3, Art. Nr. 3, 2021, doi: 10.3390/ceramics4030030.
Zum Seitenanfang